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Transverse Resonance Analysis
Discontinuities

ROBERTO SORRENTINO, ~MBER, IEEE, AND TATSUO ITOH,

Abstract —A method of analysis is proposed for characterizing firrline

discontinuities. Two conducting or magnetic planes are inserted at some

distances away from the diseontimdty so as to obtain a closed resonant

structure. A transverse resonance tetilque is then used to compute the

resonant frequencies and, from theie, the equivalent circuit parameters of

the diseontinuity. In the particular case wheu the diseontimdty is removed,

the method can be used to characterize uniform firdines.

I. INTRODUCTION

F INLINES are now recognized as a suitable technology

of millimeter-wave integrated circuits. While much

theoretical work has been done concerning the analysis and

characterization of uniform firdine structures [1], [2], a

relatively small number of analyses of finline discontinui-

ties have been developed [3], [4].

This paper presents a new method of analysis and char-

acterization of both uniform finlines and finline discon-

tinuities. The method consists of computing the resonant

frequencies of a resonator obtained by inserting two con-

ducting or magnetic planes apart from the discontinuity;

using a transverse resonance technique, the electromagnetic

(EM) fields are expanded in terms of longitudinal section

magnetic (LSM) and electric (LSE) modes of the rectangu-

lar waveguide. With respect to other approaches based on

the field expansion in terms of finline modes [3], [4], the

present one has the advantage of a substantial reduction of

computer time. In this paper, this new method ii applied to

the simple step discontinuity as well as to the cascade of

step discontinuities.

II. CHARACTERIZATION OF THE DISCONTINUITY

The characterization of a finline discontinuity is ob-

tained with the resonant frequencies of resonators which

are obtained by introducing two shorting planes at some

distances away from the discontinuity. The resultant struc-

ture is shown in Fig. 1 along with the dimensions and the

coordinate system.

As long as the frequency is such that only dominant

modes can propagate in the two finline sections and the

higher order modes excited at the discontimdty have
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Fix. 1. Transverse and lonzitudinaf cross sections of a finline discon-

tinui~ in a shorted cavity.
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Fig, 2. Equivalent circuit of Fig. 1.

negligible amplitudes at the shorting planes, the discon-

tinuity can be modeled as an equivalent two-port network,

as shown in Fig. 2.
The resonance condition in terms of the impedance

parameters of the discontinuity is

(211+21)(222 +22)-2; 2=0 (1)

where

2,= jZOi tan(~ili), i=l,2.

ZOi is the characteristic impedance of the ith finline, and &

is the corresponding phase constant. Alternatively, (1) can

also be formulated in terms of the scattering parameters of

the discontinuity.

If the same resonant frequency ~, rad/s is obtained for

three different pairs of 11,Iz, (1) allows the evaluation of

the three impedance parameters of the discontinuity at q..

In the absence of the discontinuity, & = & = ~, (1) then

reduces to

/3(6+) = nr/1

with 1 = 11+ 12. Thus, the length 1 corresponding to the

resonant frequency t.+ yields the phase constant of a tmi-

form finline at w,.

With simplle modifications, the above procedure can be

applied to other types of finline discontinuity y problems,

such as end effects in open- or short-circuited finline

sections. In such cases, the equivalent circuit will consist of

a line section terminated at one end with an unknown

reactance. Its value can be computed by way of the reso-

nant frequencies of a resonator obtained by short-circuit-
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ing the waveguide at some distance away from the line

termination.

HI. COMPUTATION OF THE RESONANT FmQUENCIES

The method for computing the resonant frequencies of

the structure will be illustrated in the case of bilateral

finline, shown in Fig. 1. The metallic fins are assumed to

be infinitely thin, although the method can easily be mod-

ified to account the finite thickness of metallization.

Because of symmetry, a longitudinal magnetic plane can

be inserted at the symmetric plane x = – al, so that only

the region x > – al has to be analyzed. The extension to

nonsymmetrical structures, such as unilateral finlines, is

straightforward and will not be considered here.

The EM field in the dielectric region (region 1: – al < x
< O) and in the air region (region 2: 0< x < az ) can be

expanded in terms of TE and TM modes of a rectangular

waveguide with inner dimensions 1 and b. We obtain the

following expressions for the transverse E- and H-field

components in the two regions:

Dielectric Region: – al< x <0

E,, = ~A&~cosk~~(x + al)i X V,~mn

mn

mn

Air Region: O < x< al

% = & ~A..k..cos(x.(x - a,)v,$..
m n

mn

where

m rz sin n wy
v.. = P.n sin ~ —b

k:= a2pO~0 (4)

where ~M. and q~~ are the TE and TM scalar potentials,

and m and n are integers with stm-ting values of O or 1,

depending on whether the TE or TM mode is being consid-

ered. Pm. are determined from the normalization condi-

tions for +~., rf~.

JlvJfmn12ds=l.
s

Equations (2)–(4) already satisfy the boundary conditions

at x = – al and x = a2. The boundary conditions at x = O

are

(Ero> on So
E,l = E,2 =

o, on S–So
(5)

IItl = H,2 = H,o, on So (6)

where EtO and HtO are unknown functions of z, y. These

functions are expanded in terms of a set of orthonormal

vector functions eu, or h~ defined over aperture region SO

(see Appendix)

E,O= ~ Vpev (7)
v

H,O = ~IPhP. (8)

P

Inserting (2), (3), (7), and (8) into (5) and (6), and making

use of the orthogonal properties of $m~, rp~~, eV, and hP,

we obtain a homogeneous system of equations in terms of

unknown coefficients V,

( tan k~mal
6 k2 c,+ Xmnv mnp O

cotan k~~a2

11
= o,

k~m – krm

/4=1, 2... (9)

where

(lo)

The condition for nontrival solutions determines the char-

acteristic equation of the given structure. This equation

may be regarded as a real function of u, 11, and 12 equated

to zero

f(@,l,,12)=o. (11)

For a given value of a = c.+, (11) can be solved to evaluate

three different pairs of ZI and 12 yielding the same reso-

nant frequency u,. These values of II and 12 can be used
for computing the discontinuity parameters discussed in
the ~re~ous section.
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Fig. 4. Resonant frequency of a step discontinuity in a shorted cavity.

IV. COMPUTED RESULTS

According to the above-described technique, the EM

fields in the air region, in the dielectric region, and in the

aperture region of the resonator are expressed in terms of

the series expansions (2), (3), (7), and (8). In the numerical

computations, only a finite number of terms of each series

can be retained. In order to obtain a proper convergent

behavior of the solution, the number of terms in adjacent

regions was chosen in such a way that the highest spatial

frequencies of the EM field were about the same in the two

regions [5], [6]. The method was first tested for computing

the propagation characteristics of a uniform finline. In the

absence of the discontinuity, the vector basis functions e.

and hP on the aperature region (see Append”ix) simply

reduce to the transverse components of the normal modes

of a rectangular waveguide with inner dimensions 1 and b.

The computed frequency behavior of the effective per-

mittivit y

Ceff= (&’Bo)2

for different gap widths is shown in Fig. 3. Increasing the

number of basis functions from 1 to 10, only small dif-

ferences (less than 1 percent) have been obtained. The time

required for computing one resonant frequency using four

basis functions was typically 0.3 s on a Univac 1100

computer. The comparison with the results obtained using

the spectral-domain approach is quite satisfactory.

In the presence of a step discontinuity, the vector basis

functions e, and hP required to represent the EM field
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Fig. 5. Scattering parameters of the step discontinuity of Fig. 4.

over the aperture, have a more complicated spatial distri-

bution, and were evaluated as shown in Appendix. This

required some additional computer time.

Fig. 4 shows the resonant frequency of the finline reso-

nator containing a step discontinuity as a function of the

total length 1‘= /l’+ 12, with the ratio lZ /11 as a parameter.

Utilizing these data, the scattering parameters of the dis-

continuity y have been computed using the procedure out-

lined in Secticm II, and are shown in Fig. 5. The computed

scattering parameters of a unilateral finline discontinuity

are compared in Fig. 6 with those computed by Schmidt [5]

using the mode-matching procedure.

Although tlhe procedure described above applies to a

more complicated discontinuity structure, a certain sim-

plification can, be introduced if the discontinuity is longitu-

dinally symmetric, such as the cascaded step discontinuities

shown in Fig. 7. For instance, because of the symmetry, the

analysis of the structure in Fig. 7(a) is reduced to the two

equivalent structures containing a single step terminated by

either a magnetic wall or an electric wall, as shown in Fig.

8. The equivalent circuits of the original and the two

reduced structures are also shown there.

With obvious modifications of expressions (4) for ~~~

and rp~., and of the basis functions eV and hp (see Ap-

pendix), the field analysis procedure described in Section

III can be applied to the case of magnetic walls to obtain

Zll, 222, and Z21 by way of the resonant frequencies.

Fig. 9 shows the computed results at 26 GHz for the

capacitive strips. The normalized reactance parameters of

the equivalent T-network are shown as a function of the fin

gap d2 and tlhe distance h. As expected, the capacitance

associated with the shunt branch Xlz increases with both h

and the ratio dl /d2. On the contrary, the series branches

have an inductive reactance whose value is much less

sensitive to variations with respect to dl/d2. It can be

shown that increasing h or dl/d2 results in an increase in

the magnitudes of the reflection coefficient S1l. The phase

of Sll varies almost linearly with h.

The dual case of inductive notches is shown in Fig. 10,

where the normalized admittance parameters of the equiv-

alent T-network are shown as functions of h and dz /dl. In

this case, the inductance associated with the series branch
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Fig. 6, Scattering parameters of a unilateral finline step discontinuity. o

Schmidt [7].
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Fig. 7. Cascaded step discontimrities: (a) inductive notch and (b) capa-

citive strip.

increases with h and dz /dl, while the capacitance of the

shunt branches increases only slightly as a function of

these parameters.

V. CONCLUSIONS

A new method of analysis has been proposed for the

characterization of uniform firdines and finline discontinui-

ties. The method is based on the computation of the

resonant frequencies of a resonator obtained by short- (or

open- ) circuiting a finline section containing the discon-

tinuity. The analysis procedure consists of a field expan-

sion in terms of LSM and LSE modes of the rectangular

/

--!) 2,, +2,2
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Fig. 8. Evacuation of the Z-parameters of a longitudinally symmetric

discontinuity.
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Fig. 9.
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Normalized reactauce parameters of capacitive strips.

waveguide. These expressions are matched with the field

distribution in the plane of the fins. With respect to other

approaches based on the field expansion in terms of finline

modes, this procedure reduces computer time. The results

are in good agreement with the numerical values obtained

with other techniques.

APPENDIX

The two sets of orthonormalized vector functions eu, hY

used in (7) and (8) for expanding the EM field at x = O in

the aperture region are derived in this Appendix in the case

of a step discontinuity between two finline sections of

different slot widths. Because of symmetry considerations,

a longitudinal electric plane can be placed at y = O (see

Fig. 1), so reducing the longitudinal section to that of Fig.

11.

The aperture region So= (Sl U S2) maybe viewed as the

cross section of a waveguide having a stepped cross section.
We can therefore expand the EM-field components E,O, IIto
lying in the yz plane in terms of the TE and TM scalar
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Fig. 10. Normalized admittance parameters of inductive notches.

potentials

Ho= ~Lv,4n + E1,V,C% x 2. (A2)
n v

+“ and rp, represent the transverse potentials for TE and

TM modes, respectively, satisfying the eigenvalue equa-

tions

in So together with proper boundary conditions.

For the sake of brevity, only the solution of (A3) will be

illustrated. Moreover, in order to simplify the notation, the

index n will be dropped.

In order to solve (A3), the function ~ can be expressed

as follows:

where

@ = COSkl,(z + 11) cos % (A6)
1

(A7)+$2)= COSkz~(z – ]2) COS -
dz/2

()

k~=k~– _?!_ 2
d,/2 ‘

i=l,2. (A8)

Expressions (A5)–(A8) are such that (A3) is satisfied to-

gether with the boundary conditions at z = – 11,lZ and

Y =0, dl/Z d2/2. The boundary conditions at z = O

4’, =$2> 0<y<dz/2 (A9)

bi2

d, /2

b

d, /2

!,

Fig. 11. Reduced geometry of the step discontinuity

through the orthogonal properties of cosine functions, lead

to a homogeneous system of equations in the expansion

coefficients A,, B,

~4frscoshA - ~Bscosk2,1z = O, s = 0,1,2.. ~
r s

(All)

,$-A,kl, sin klpll + ~B,f,,k2, sin k2,12 = O,
r s

r=o,l,2 . . . (A12)

where

(8.=;’ r=()

r#O

f,, = ~d2’2COS k COS* d
dl/2 d2/2 ‘“

The condition for nontrivial solutions of (Ail)-(A12) con-

stitutes the characteristic equation from which the eigenval-

ues k: can be computed. For each k:, the expansion

coefficients A,, B, are determined using (Ail)–(A12) and

imposing the normalization condition

flvc+12dS=l,
S()

Finally, it can be easily demonstrated that

obtained satisfy the orthogonality condition

~O%+.%&dS=O, rr+rn

the ~.’s so

even if, for numerical reasons, the series in (A5) will be

truncated to a finite number of terms.

A similar procedure can be applied to the evaluation of

the qp’s. The right-hand side of (Al) and (A2) finally

provide the required expansions in terms of orthonormal

vector functions.

If the resonator is terminated- at z = – 11,12 by magnetic

walls, (A6) and (A7) are modified corresponding, in order

to satisfy the open-circuit boundary conditions. Moreover,

the eigenfunction TO, corresponding to the eigenvalue k: =

O, must also be included in expansions (Al) and (A2). This

eigenfunction corresponds to the TEM mode of the stepped

waveguide with mixed conducting and magnetic

boundaries.



1638 IEEE TP,ANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-32, NO. 12, DECEMBER 1984

[1]

[2]

[3]

[4]

[5]

[6]

[7]

REFf3mNcEs

H. Hofmrmn, “Dispersion of planar waveguides for millimeter-wave

application,” Arch. Elek. Ubertragang., vol. 31, pp. 40-44, Jan. 1977.

L.-P. Schmidt and T. Itoh, “Spectraf domain analysis of dominant

and higher order modes in fin-lines,” IEEE Trans. Microwave Theoiy
Tech. vol. MTT-28, pp. 981-985, Sept. 1980.
A. Beyer, “Calculation of discontimrities in grounded finlines taking

into account the metaflization thickness and the influence of the

mount-slits,” in Proc. of the 12th European Microwave Conf. (Helsinki,
Finland), 1982, pp. 681-686.

H. El Hennaway and K. Schunemann, “Anafysis of fin-line discon-

tinuities,” in Proc. of the 9th European Microwave Conf. (Brighton,

England), 1979, pp. 448-452.

S. W. Lee, W. R. Jones, and J. J. Campbell, “Convergence of

numerical solutions of iris-type discontinuity y problems,” IEEE Trans.

Microwave Theoy Tech., vol. MTT-19, pp. 528-536, June 1971.
Y. C. Shih and K. G. Gray, “Convergence of numericaf solutions of

step-type wave guide discontinuity problems by modaf anrdysis,” in
IEEE MTT-S Int. Symp. Dig. (Boston, MA), 1983, pp. 233-235.
L.-P. Schmidt, private communication.

Roberto Sorrentino received a degree in elec-

tronic engineering from the University of Rome
La Sapienza, Rome, Itafy, in 1971.

He then joined the Institute of Electronics of

the same University under a fellowship of the
Italian Ministry of Education. Since 1974, he has

been an Assistant Professor of Microwaves at
Rome University La Sapierrza. He was afso pro-

fessor incaricato of Microwaves at the Univer-
sity of Catania, Catania, Italy, from 1975 to
1976, and of the University of Ancona, Ancona,

Italy, from 1976 to 1977. From 1977 to 1981, he was professore incaricato

of Solid State Electronics at the University of Rome La Sapienza, where
he is presently an Associate Professor of Microwave Measurements. From

September to December 1983, he was appointed as a Research Fellow in

the Electrical Engineering Department of the University of Texas at

Austin, Austin, TX. His research activities have been concerned with

electromagnetic wave propagation in anisotropic media, numerical sohr-

tion of electromagnetic structures, electromagnetic field interaction with
biological tissues, and mainly with the anafysis and design of microwave

and millimeter-wave integrated circuits.

Since 1978, Dr. Sorrentino has been a member of the Executive
Committee of the IEEE Middle and South Italy Section, and is the

Chairman of the locaf MTT Chapter. He is also a member of the Italian
Electrical Society (AEI).

*

Tatsuo Itoh (S’69-M69-SM’74-F’82) received
the Ph.D. degree in electncaf engineering from
the University of Illinois, Urbana, in 1969.

From September 1966 to April 1976, he was

with the Electrical Engineering Department, Uni-
versity of Illinois. From April 1976 to August

1977, he was a Senior Research Engineer in the

Radio Physics Laboratory, SRI International,

Menlo Park, CA. From August 1977 to June
1978, he was an Associate Professor at the Uni-

versity of Kentucky, Lexington. In July 1978, he

joined the faculty at the University of Texas at Austin, where he is now a
Professor of Electncaf Engineering. During the summer 1979, he was a

Guest Researcher at AEG-Teleftmken, Ulm, West Germany. Since Sep-

tember 1983, he has held the Hayden Head Centennial Professorship of
Engineering at the University of Texas.

Prof. Itoh is a member of the Institute of Electronics and Communica-
tion Engineers of Japan, Sigma Xi, and Commissions B of USNC/URSI.
He serves on the Administrative Committee of IEEE Microwave Theory
and Techniques Society and is the Editor of IEEE TRANSACTIONS ON

MICROWAVE THEORY AND TECHNIQUES. He is a Professional Engineer

registered in the State of Texas.

Synthesis of Optimum Finline Tapers Using
Dispersion Formulas for Arbitrary Slot

Widths and Locations

CHRISTIAN SCHIEBLICH, JERZY K. PIOTROWSKI, AND J. H. HINKEN, SEN1ORMEMBER, IEEE

Abstract —The theory of TEM matching sections has been modified so

that it can be applied to finline tapers. A step-by-step procednre is given to

calculate the taper contour for a given maximum VSWR. The taper is
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optimum in the sense that its length is the shortest possible for the required

VSWR. To achieve fast convergence, a transversal resonance method was

developed to cafculate finfine dispersion, which is vafid for arbitrary slot

widths and slot locations. The finline can be unilateral as well as bilateraf,

and the slot may be off-centered. The dispersion data are compared with

values found in the literature, and the calculated taper performance with

the authors’ own measurements, both showing good agreement.

I. INTRODUCTION

F INLINE COMPONENTS have attracted much at-

tention due to their favorable properties, such as

broad single-mode bandwidth, moderate attenuation, sim-

0018 -9480/84/1200-1638$01 .00 01984 IEEE


