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Transverse Resonance Analysis of Finline
Discontinuities

ROBERTO SORRENTINQ, MEMBER, IEEE, AND TATSUO ITOH, FELLOW, IEEE

Abstract —A method of analysis is proposed for characterizing finline
discontinuities. Two conducting or magnetic planes are inserted at some
distances away from the discontinuity so as to obtain a closed resonant
structure. A transverse resonance technique is then used to compute the
resonant frequencies and, from these, the equivalent circuit parameters of
the discontinuity. In the particular case when the discontinuity is removed,
the method can be used to characterize uniform finlines.

1. INTRODUCTION

INLINES are now recognized as a suitable technology

i of millimeter-wave integrated circuits. While much

theoretical work has been done concerning the analysis and

characterization of uniform finline structures [1], [2], a

relatively small number of analyses of finline discontinui-
ties have been developed [3], [4].

This paper presents a new method of analysis and char-
acterization of both uniform finlines and finline discon-
tinuities. The method consists of computing the resonant
frequencies of a resonator obtained by inserting two con-
ducting or magnetic planes apart from the discontinuity;
using a transverse resonance technique, the electromagnetic
(EM) fields are expanded in terms of longitudinal section
magnetic (LSM) and electric (LSE) modes of the rectangu-
lar waveguide. With respect to other approaches based on
the field expansion in terms of finline modes [3], [4], the
present one has the advantage of a substantial reduction of
computer time. In this paper, this new method is applied to
the simple step discontinuity as well as to the cascade of
step discontinuities.

II. CHARACTERIZATION OF THE DISCONTINUITY

The characterization of a finline discontinuity is ob-
tained with the resonant frequencies of resonators which
are obtained by introducing two shorting planes at some
distances away from the discontinuity. The resultant struc-
ture is shown in Fig. 1 along with the dimensions and the
coordinate system.

As long as the frequency is such that only dominant
modes can propagate in the two finline sections and the
higher order modes excited at the discontinuity have
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Fig. 1. Transverse and longitudinal cross sections of a finline discon-

tinuity in a shorted cavity.
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Fig, 2. Equivalent circuit of Fig. 1.

negligible amplitudes at the shorting planes, the discon-
tinuity can be modeled as an equlvalent two—port network,
as shown in Fig. 2.

The resonance condition in terms of the impedance
parameters of the discontinuity is

(Zy+Z)(Zp+ 2,)- 28, =0

(1)
where
Z = jZ,tan(B,1,), i=1,2.

Z,, is the characteristic impedance of the ith finline, and 8,
is the corresponding phase constant. Alternatively, (1) can
also be formulated in terms of the scattering parameters of
the discontinuity.

If the same resonant frequency w, rad/s is obtained for
three different pairs of /;,/,, (1) allows the evaluation of
the three impedance parameters of the discontinuity at «,.

In the absence of the discontinuity, 8, = 8, =8, (1) then
reduces to

B(w,) =na/l
with /=1, +[,. Thus, the length / corresponding to the
resonant frequency w, vields the phase constant of a uni-
form finline at w,.

With simple modifications, the above procedure can be
applied to other types of finline discontinuity problems,
such as end effects in open- or short-circuited finline
sections. In such cases, the equivalent circuit will consist of
a line section terminated at one end with an unknown
reactance. Its value can be computed by way of the reso-
nant frequencies of a resonator obtained by short-circuit-
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ing the waveguide at some distance away from the line
termination.

I

The method for computing the resonant frequencies of
the structure will be illustrated in the case of bilateral
finline, shown in Fig. 1. The metallic fins are assumed to
be infinitely thin, although the method can easily be mod-
ified to account the finite thickness of metallization.

Because of symmetry, a longitudinal magnetic plane can
be inserted at the symmetric plane x = — a;, so that only
the region x > — a; has to be analyzed. The extension to
nonsymmetrical structures, such as unilateral finlines, is
straightforward and will not be considered here.

The EM field in the dielectric region (region 1: —a; < x
< 0) and in the air region (region 2: 0 < x < a,) can be
expanded in terms of TE and TM modes of a rectangular
waveguide with inner dimensions / and ». We obtain the
following expressions for the transverse E- and H-field
components in the two regions:

COMPUTATION OF THE RESONANT FREQUENCIES

Dielectric Region: —
E,=3.4,,

mn

a,<x<0

COSkr,nn(x + al)i X vt"lJmn

]w€0€ ZBr’nnkr’nn COSkr,nn(x + al)vtq')mn

ZAmn mnSIHk’ (‘x+a1)vt¢mn

tl

Jepg n
+ZBr:lnSink;nn(x_i-a])Vt(PmnX.i'. (2)
mn
Air Region: 0 < x < a,
2= ZAmn sin kmn(x - a2)£ X vt‘l/mn
mn
- jwe, % K S0 K (X = @5) V0,
:U‘O ZAmn mnCOSkmn('x - a2)vt¢mn

where
Yun = P,,,CO8 m;rz cos gvbr_y
.. mmz . nwy

Prun = P SIL 7 sin — =

P — 6m8n 1 S = {1, i=0
mn b Y. ! 2, i+0
e (7 )

Ymn l b

krznn =k(% thn k:jn':k(%er_yr%m

(4)
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where ¢, and ¢,,, are the TE and TM scalar potentials,
and m and n are integers with starting values of 0 or 1,
depending on whether the TE or TM mode is being consid-
ered. P,, are determined from the normalization condi-
tions for ¢

mn3 q’)mn

[1V i as =1
N

JIV @ ds =1.
S

Equations (2)—(4) already satisfy the boundary conditions

at x = —a, and x = a,. The boundary conditions at x =0
are
E on S,
E. = - 10> 0
11 Et2 {O, on S — SO (5)

H,= H,, (6)

where E,, and H,, are unknown functions of z, y. These
functions are expanded in terms of a set of orthonormal
vector functions e,, or k, defined over aperture region S,
(see Appendix)

H,= on S,

=LVe, (7)
Hto = ZIuh;L' (8)
"
Inserting (2), (3), (7), and (8) into (5) and (6), and making
use of the orthogonal properties of ¢, Prins €rs and h,,

we obtain a homogeneous system of equations in terms of
unknown coefficients ¥,

- k,,,cotan km,,az)

tank, a, cotank,,a, 0
k., Kpin ’

E I/v [gmnug.mnp(kr/nn tan kr’nnal

+ Xmmﬂmnpk(% ( €

p=1,2---
where

b= [ AX VA0 €,d5 Xy = [ Ve, dS
S So

= [ Vbpuh,ds

0

= [ ViPuX & h,dS.
So

(10)
The condition for nontrival solutions determines the char-
acteristic equation of the given structure. This equation
may be regarded as a real function of w, /;, and /, equated
to zero

Kmnp

fle,1,1,)=0. (11)

For a given value of w = w,, (11) can be solved to evaluate
three different pairs of /;, and /, yielding the same reso-
nant frequency w,. These values of /; and /, can be used
for computing the discontinuity parameters discussed in
the previous section.
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Fig. 4. Resonant frequency of a step discontinuity in a shorted cavity.

IV. CoMPUTED RESULTS

According to the above-described technique, the EM
fields in the air region, in the dielectric region, and in the
aperture region of the resonator are expressed in terms of
the series expansions (2), (3), (7), and (8). In the numerical
computations, only a finite number of terms of each series
can be retained. In order to obtain a proper convergent
behavior of the solution, the number of terms in adjacent
regions was chosen in such a way that the highest spatial
frequencies of the EM field were about the same in the two
regions [5], [6]. The method was first tested for computing
the propagation characteristics of a uniform finline. In the
absence of the discontinuity, the vector basis functions e,
and h, on the aperature region (see Appendix) simply
reduce to the transverse components of the normal modes
of a rectangular waveguide with inner dimensions / and b.

The computed frequency behavior of the effective per-
mittivity

€ett = (,3/30)2

for different gap widths is shown in Fig. 3. Increasing the
number of basis functions from 1 to 10, only small dif-
ferences (less than 1 percent) have been obtained. The time
required for computing one resonant frequency using four
basis functions was typically 0.3 s on a Univac 1100
computer. The comparison with the results obtained using
the spectral-domain approach is quite satisfactory.

In the presence of a step discontinuity, the vector basis
functions e, and h, required to represent the EM field

~ 1635
1 | I T 7 10°
Is,.|
WR 28
. d, =2mm
~~\\\s\i5“ 2 =lmm
50 .~ R -1 0°
|5“| \~\‘\
o
[moTTTTTT <g,, TTTTTTTTTTITETRTT =TT
~
0 sl OSSR R 2 -10°
26 30 35 40
f (GHz)

Fig. 5. Scattering parameters of the step discontinuity of Fig, 4.

over the aperture, have a more complicated spatial distri-
bution, and were evaluated as shown in Appendix. This
required some additional computer time.

Fig. 4 shows the resonant frequency of the finline reso-
nator containing a step discontinuity as a function of the
total length / =/, + I, with the ratio /, /I, as a parameter.
Utilizing these data, the scattering parameters of the dis-
continuity have been computed using the procedure out-
lined in Section II, and are shown in Fig. 5. The computed
scattering parameters of a unilateral finline discontinuity
are compared in Fig. 6 with those computed by Schmidt [5]
using the mode-matching procedure.

Although the procedure described above applies to a
more complicated discontinuity structure, a certain sim-
plification can be introduced if the discontinuity is longitu-
dinally symmetric, such as the cascaded step discontinuities
shown in Fig. 7. For instance, because of the symmetry, the
analysis of the structure in Fig. 7(a) is reduced to the two
equivalent structures containing a single step terminated by
either a magnetic wall or an electric wall, as shown in Fig.
8. The equivalent circuits of the original and the two
reduced structures are also shown there.

With obvious modifications of expressions (4) for i,
and ¢,,,, and of the basis functions e, and h, (see Ap-
pendix), the field analysis procedure described in Section
I1I can be applied to the case of magnetic walls to obtain
Z.1, Z,,, and Z,, by way of the resonant frequencies.

Fig. 9 shows the computed results at 26 GHz for the
capacitive strips. The normalized reactance parameters of
the equivalent T-network are shown as a function of the fin
gap d, and the distance h. As expected, the capacitance
associated with the shunt branch X, increases with both A
and the ratio d,; /d,. On the contrary, the series branches
have an inductive reactance whose value is much less
sensitive to variations with respect to d;/d,. It can be
shown that increasing & or d, /d, results in an increase in
the magnitudes of the reflection coefficient s,;. The phase
of s,, varies almost linearly with A.

The dual case of inductive notches is shown in Fig. 10,
where the normalized admittance parameters of the equiv-
alent #-network are shown as functions of 4 and d, /d,. In
this case, the inductance associated with the series branch
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Fig. 7. Cascaded step discontinuities: (a) inductive notch and (b) capa-
citive strip.

increases with ~ and d, /d,, while the capacitance of the
shunt branches increases only slightly as a function of
these parameters.

V. CoONCLUSIONS

A new method of analysis has been proposed for the
characterization of uniform finlines and finline discontinui-
ties. The method is based on the computation of the
resonant frequencies of a resonator obtained by short- (or
open- ) circuiting a finline section containing the discon-
tinuity. The analysis procedure consists of a field expan-
sion in terms of LSM and LSE modes of the rectangular
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waveguide. These expressions are matched with the field
distribution in the plane of the fins. With respect to other
approaches based on the field expansion in terms of finline
modes, this procedure reduces computer time. The results
are in good agreement with the numerical values obtained
with other techniques.

APPENDIX

The two sets of orthonormalized vector functions e,, h,
used in (7) and (8) for expanding the EM field at x =0 in
the aperture region are derived in this Appendix in the case
of a step discontinuity between two finline sections of
different slot widths. Because of symmetry considerations,
a longitudinal electric plane can be placed at y =0 (see
Fig. 1), so reducing the longitudinal section to that of Fig.
11.

The aperture region S, = (S; U S,) may be viewed as the
cross section of a waveguide having a stepped cross section.
We can therefore expand the EM-field components E,, H,,
lying in the yz plane in terms of the TE and TM scalar
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potentials

E,= Z V,xxXvy,+ Z A (Al)

H,=Y1v4y,+Y1v,9 X% (A2)
n 14

Y, and ¢, represent the transverse potentials for TE and
TM modes, respectively, satisfying the eigenvalue equa-
tions

v, +kiy,=0
Vig,+kie,=0

(A3)
(A4

in S, together with proper boundary conditions.

For the sake of brevity, only the solution of (A3) will be
illustrated. Moreover, in order to simplify the notation, the
index n will be dropped.

In order to solve (A3), the function ¢ can be expressed
as follows:

V= ZA ¥, in §;
V= ZB vo, s, (43)
where
xp(l)~cosk1,(z+ll)cos y /2 (A6)
Y@ =cosk,,(z—1,)cos ‘—Jszl/yz (A7)
k?,=kf—(df;2)2, i=1,2. (A8)

Expressions (A5)—(A8) are such that (A3) is satisfied to-
gether with the boundary conditions at z=—1,,/, and
y=0,d,/2,d, /2. The boundary conditions at z =0

Y=, O0<y<d,/2

a
ov, [P o<y<ayn
2z —\.02

0, dy/2<y<d/?

(A9)

(A10)
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through the orthogonal properties of cosine functions, lead
to a homogeneous system of equations in the expansion
coefficients 4,, B,

Y A,f coskyl — 28 =2 B,cosk,l,=0, s=0,1,2--
(A11)
d
35, == Ak, sin kI, + ZB foky sink, 1, =
r=0,1,2--- (A12)
where
1, r=0
&_<L r#0
_ (/2 ray sy
fs™ fo €os 4.2 cos 4,72 dy

The condition for nontrivial solutions of (A11)-(A12) con-
stitutes the characteristic equation from which the eigenval-
ues k2 can be computed. For each k2, the expansion
coefficients A4,, B, are determined using (A11)—(A12) and
imposing the normalization condition

|Vy|?dS =1.
So

Finally, it can be easily demonstrated that the ¢,’s so
obtained satisfy the orthogonality condition

n#*m

f V(‘Pn. VElpm dS = 0’
So

even if, for numerical reasons, the series in (AS) will be
truncated to a finite number of terms.

A similar procedure can be applied to the evaluation of
the ¢,’s. The right-hand side of (Al) and (A2) finally
provide the required expansions in terms of orthonormal
vector functions. )

If the resonator is terminated at z = — [;, [, by magnetic
walls, (A6) and (A7) are modified corresponding, in order
to satisfy the open-circuit boundary conditions. Moreover,
the eigenfunction ¢,, corresponding to the eigenvalue k2 =
0, must also be included in expansions (Al) and (A2). This
eigenfunction corresponds to the TEM mode of the stepped
waveguide with mixed conducting and magnetic
boundaries.
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Synthesis of Optimum Finline Tapers Using
Dispersion Formulas for Arbitrary Slot
Widths and Locations

CHRISTIAN SCHIEBLICH, JERZY K. PIOTROWSKI, AND J. H. HINKEN, SENIOR MEMBER, IEEE

Abstract —The theory of TEM matching sections has been modified so
that it can be applied to finline tapers. A step-by-step procedure is given to
calculate the taper contour for a given maximum VSWR. The taper is
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optimum in the sense that its length is the shortest possible for the required
VSWR. To achieve fast convergence, a transversal resonance method was
developed to calculate finline dispersion, which is valid for arbitrary slot
widths and slot locations. The finline can be unilateral as well as bilateral,
and the slot may be off-centered. The dispersion data are compared with
values found in the literature, and the calculated taper performance with
the authors’ own measurements, both showing good agreement.

1. INTRODUCTION

INLINE COMPONENTS have attracted much at-
tention due to their favorable properties, such as
broad single-mode bandwidth, moderate attenuation, sim-
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